Showing posts with label Dinosaur. Show all posts
Showing posts with label Dinosaur. Show all posts

Thursday, February 26, 2015

Alien Vs. Predator Vs. Parasaurolophus

A few days ago, I sat down and, with several hours of homework to do, watched Ridley Scott's 1979 classic "Alien."  It was phenomenal, and I enjoyed it, and went on to watch Predator (great) and Prometheus (not so great).  Now, on this excellent but snowy Thursday afternoon, I'm about an hour into "Aliens," knowing that any second now an Alien xenomorph is going to appear out of nowhere and kill something.  But that's not why I paused the movie at the 54:44 minute mark.  What I've been thinking about is far more pressing: what's the purpose of that enormously distended xenomorph cranium?
If you have no idea what's going on in this picture yet, that means you're probably sane.
Usually with aliens, you can just pass off a big head as an indicator of big brains.  Ki-Adi Mundi from Star Wars, for example, has two brains in that big 'ol Cerean cranium of his, and an extra heart to boot.  If you rewatch "A New Hope" extra carefully, see if you can't spot Pons Limbic (note the brainy pun) in the Mos Eisley Cantina, the big-brained Siniteen whose head literally resembles a brain.  The Guardians of the Universe from the D.C. Comics franchise are often pretty wise, but in light of some recent events, they might not be quite as level headed and emotion spectrumless as we thought (but that's a story for another bright snowy day).  The Face of Boe from Doctor Who seems to be pretty smart, given that he's literally just a giant head in a tank and can communicate telepathically.  Then there's Zilius Zox, a Red Lantern from the D.C. universe, who also appears to be little more than a giant head.  Both Jumba (from Disney's "Lilo and Stitch") and E.T. the Extra-Terrestrial (from E.T. the Extra-Terrestrial) seem to have noggins that are larger than average in proportion to body size, and seem to have above average intelligence to match.  Marvin the Martian and Roger from American Dad?  Both smart, both big-headed.
A skull of the duck-billed hadrosaur Parasaurolophus at the American Museum of Natural History in New York, from my visit last summer with my good friend Zach Evens (who also deserves some credit listing big-brained aliens).
Now what about the aliens, or xenomorphs, from the "Alien" franchise?  Although undeniably intelligent to some degree, they aren't what you'd typically think of when the subject of brainy aliens comes up around the dinner table, at least not in terms of processing power.  But they definitely have big heads.  So what are they used for if not for thinking?  We, of course, can turn to the science of dinosaur paleontology to help us with this question.  Take a look at the dinosaur skull above.  This critter is a hadrosaur, or duck-billed dinosaur, called Parasaurolophus.  Scientists believe that it blew air through its special crest to produce a sound very similar to that of a trombone!  Many hadrosaurs had wild cranial ornamentation, as did other dinosaurs such as some of the ceratopsians and the pachycephalosaurs, just to name a few.  These wacky head-dos almost certainly had a whole lot to do with attracting a mate and sexual selection.  Essentially, the bigger your crest is, the more attractive you are.  Is it possible a similar sort of thing evolved for the Alien xenomorphs?  In "Aliens," we can see that the queen has a different head pattern than do all of the other xenomorphs that we've seen so far, indicating some sort of sexual dimorphism is potentially at work.  Interesting.  What should you take from this blog post?  Probably just that I have way too much time on my hands.

On a brief side note, I realized I've actually talked about the skull of the xenomorphs previously, before I'd even seen the movies.  Check out that post, all about otter skulls, by clicking HERE.
Alien vs. predator vs. Parasaurolophus vs. Tyrannosaurus vs. Lego Gilderoy Lockhart vs. Darth Vader vs. Polly Pocket vs. creepy frog candle vs. macaw vs. Apatosaurus vs. medieval archer vs. Boba Fett Pez Dispenser vs. Ambelodon vs. mallard vs. fisherman from an ironic fish cake vs. Jumba vs. Craire Cat Hello Thingy vs. six different types of shark vs. Taz monster truck vs. Aragorn son of Arathorn vs. Liam Payne vs. Marty from "Pirates of the Caribbean" vs. mouse cat toy vs. basilisk lizard vs. Spider-Man vs. penguins with jet packs and missile launchers vs. Themistocles vs. Terri Irwin.  And this is why it takes me so long to write a blog post.  I think we were all a little surprised about how quickly things escalated.  Yeah, I definitely have too much time on my hands.

Wednesday, September 10, 2014

Anoxic Conditions From Everest to Europa: Swamps, Fossils, Naked Mole Rats, and the Hunt for Extraterrestrial Life

Above elevations of 6500 meters (21,300 feet), most climbers tend to start using supplemental oxygen.  At altitudes higher than this, oxygen is spread so thin that humans can have a very tough time breathing.  Even people who come from sea level to my hometown of Boulder, Colorado at an elevation of 1,655 meters (5,430 feet) often get altitude sickness, and there's still a whole lot of altitude to go before you even get to Everest Base Camp.  Most birds don't fly as high as the summit of Mt. Everest, because most birds have no reason to fly that high.  However, for the bar-headed goose, the Himalayas form an unfortunate, but not impassable, barrier between their winter feeding grounds in India and their Tibetan nesting grounds.  These geese have been reported flying over some of the highest Himalayan peaks, and they're not the only ones that fly this high.  On November 29th, 1973, a Rüppell's griffon, a type of Old World vulture, collided with an airplane at an altitude of 11280 meters (37,000 feet).  By comparison, oxygen cylinders are recommended for sailplane pilots flying over 3660 meters (12,000 feet)!
Here we have a beautiful (and extraordinarily neat) size comparison and altitude chart of a number of things covered in the post, including the altitude of Denver, the summit of Mt. Everest, the upper extent of the range of the snow leopard, and the height at which the Rüppells griffon got sucked into the jet engine.  I've also thrown in some other helpful and fun things for comparison as well.
Part of what helps birds survive at altitudes that could kill a human is a series of air sacs that allow air to flow in one direction through the body of the bird.  In humans, the air we breath in and out travels back and forth along the same tubes.  In birds, as well as some of their close dinosaurian cousins, these air sacs would have have allowed the air to flow more efficiently through their bodies.  While this is simply one of many adaptations that can help birds fly at incredibly high altitudes, other animals have evolved other adaptations to assist in high altitude living.  Scientists have determined that changes in the genes EGLN1 and EPAS1 are linked with animals living in oxygen impoverished environments, such as the snow leopard, humans native to Tibet, and naked mole rats.  Naked mole rats live in underground colonies of 20-300 individuals, and are one of two species of mammal that can be classified as "eusocial," meaning that their colonies display a caste system (similar to the social structure seen in ant and termite colonies).  These underground colonies are poorly ventilated, which means that as the mole rats inhale oxygen and exhale carbon dioxide, CO2 concentrations can increase to levels that would be unsafe for humans.  Fortunately, naked mole rats are well adapted to breathing very little oxygen, and their brains seem incapable of registering pain upon contact with acids, which is thought to help them in these CO2 rich confines.  They also demonstrate similar changes in the aforementioned genes as snow leopards and the Tibetan people, indicating another adaptation to these low oxygen (or hypoxic) conditions.
A group of naked mole rats all huddled together at the Cheyenne Mountain Zoo in Colorado Springs, Colorado.  Look at all of that eusociality!
Although hypoxic conditions can bode ill for human climbers and gregarious colonial rodents, low oxygen conditions can be great for paleontologists.  When oxygen levels drop to nearly zero, anoxic conditions prevail, and bacterial decomposition of organic material is greatly reduced.  This can be a major factor when it comes to soft-tissue preservation, such as feathers and skin.  A FEW WEEKS AGO, we talked about several famous fossil sites called Lagerstätten (a German term meaning "mother lode"), that are set apart from other fossil deposits due to the quality and/or quantity of the fossils discovered there.  One of the most famous examples is the Cambrian-aged Burgess Shale in British Columbia, Canada.  Abrupt burial of the 500 million year old organisms, coupled with the anoxic conditions that prevailed at the bottom of this body of water, ensured that these soft-bodied organisms would be preserved in exquisite detail.
A drawing of Opabinia, one of the many creatures that inhabited the Cambrian aged Burgess Shale in British Columbia, Canada.  Photo Credit: Sam Lippincott
Why do swamps often have that rotten egg smell?  Believe it or not, the answer is closely related to what we've already been talking about!  Under hypoxic or anoxic conditions, bacteria that use oxygen (O2) sometimes have to make do with sulfur (S).  If you look at a periodic table, you can see that sulfur (element #16) is directly below oxygen (element #8).  In the periodic table, each group (or column) of elements has very similar chemical properties, which means each element will react in a similar fashion.*  For the bacteria that can't get enough oxygen, they will sometimes turn to its close cousin sulfur instead.  Below is the chemical formula for cellular respiration, which is what these bacteria do, as well as some of the cells in humans.  On the left, we have the inputs: glucose (C6H12O6), and oxygen (O2).  When we breath in air, we are bringing oxygen into our lungs, and we can get glucose from the foods we eat.  On the right of the arrow, we have the outputs: water (H20), carbon dioxide (CO2), and energy.  Remember how we talked about the CO2 concentrations in naked mole rat burrows?  CO2 is one of the products of respiration, and one that can be harmful in large doses.  Energy is another product of respiration, which is the fuel that cells need to do their job.  In places where there is less oxygen input (such as at the top of Mt. Everest or in a naked mole rat burrow), the cells don't get as much energy output, and they can't do their job as well.
Now, instead of having oxygen as one of the inputs of cellular respiration, let's try sticking oxygen's close cousin, sulfur, into the equation to see what will happen.  As you can see below, the glucose on the left of the equation remains unaffected, as does the carbon dioxide output on the right of the equation.  But instead of having water (H2O) as another one of the outputs, we now see a molecule with the formula H2S.  Instead of forming water (hydrogen oxide), we have now formed a closely related molecule, hydrogen sulfide.  In swamps, large amounts of organic material leads to lots of bacteria and bacterial decomposition, which in turn can lead to lots of the oxygen being used up in the water.  That's when these bacteria start using sulfur to make their energy, producing hydrogen sulfide, with that characteristic rotten egg smell.  Even with this sulfur replacement, sometimes the bacteria just can't keep up with the amount of vegetation that is deposited in the swamp, and the organic material builds up.  If the rate at which the vegetation accumulates exceeds the rate which the bacteria can decompose the vegetation, then you have coal formation potential sometime in the future.
Let's take this one step further.  In normal respiration, where oxygen is one of the inputs and water (H2O) is one of the outputs, carbon dioxide (CO2) is another one of the outputs.  If animals and bacteria keep using up oxygen and turning it into carbon dioxide, why haven't we run out of oxygen?  Will we run out one day?  Fortunately, for the time being, plants have got our back, by undergoing a process called photosynthesis.  Photosynthesis is almost the exact opposite of respiration: carbon dioxide and water are the inputs, and glucose and oxygen are the outputs.  However, unlike respiration, light is one of the inputs of photosynthesis.  In the 1700s, a man named Joseph Priestly did experiments in which he sealed a mouse in a jar, and waited to see what happened.  The mouse, as you could probably predict, suffocated and died.  It used up its oxygen to create energy (as well as carbon dioxide), and eventually ran out of oxygen.  (This is why it's important not to put animals into completely sealed jars with no airflow, as they will suffocate.)  However, if he put a plant into the same jar as the mouse, the mouse didn't suffocate.  We now know that is because, as the mouse used up the oxygen, creating carbon dioxide, the plant would use the carbon dioxide, ultimately creating more oxygen.
As you probably know, plants need light to survive, and as we mentioned before, that's because light is one of the inputs of photosynthesis.  No light, no photosynthesis.  No photosynthesis, your plant dies.  For many years, scientists assumed that all life on Earth was directly dependent on the Sun for its energy.  That is, until 1977, when scientists discovered entire communities of biological organisms living thousands of meters beneath the surface of the ocean, too far from any sunlight to undergo photosynthesis.  So what was going on?  How were these communities able to survive without access to the sunlight?

Hydrothermal vents are essentially underwater hot springs that form along tectonic boundaries thousands of meters beneath the surface of the ocean.  These underwater vents spew different compounds containing sulfur into the surrounding water, just like aboveground geysers do, too.  (If you have ever been to Yellowstone National Park, then you might even remember the rotten egg smell.)  Some bacteria that surround these vents are actually able to use these sulfur-containing compounds to create the energy needed to undergo a process similar to photosynthesis, called chemosynthesis (consult the equation below).  Chemosynthesis is very similar to photosynthesis, with a few key differences, the biggest difference being the sulfur reactions vs. sunlight as one of the inputs.  You can also see that, instead of having water (H2O) as an input like in photosynthesis, chemosynthesis instead uses hydrogen sulfide (H2S) as an input.  Then, instead of producing oxygen, the chemosynthetic organisms produce water and sulfur.  You can compare it to the oxygen-poor respiration equation that we talked about with the swamps, and see that it is similar to that equation as well, simply flipped around.
But that's not all.  Scientists have taken this idea a step (or rather, one giant leap) further.  The search for life on other planets thus far has yielded nothing, but that doesn't mean it's not there.  It is now realized that some of the factors that were once thought to limit the development of life, such as sunlight, might not be as crucial as we once thought, and the hydrothermal vent communities have been crucial in the maturation of these ideas.  Some scientists suspect that life could exist on Mars by using chemosynthesis, but a new candidate has been receiving an increasing amount of attention: one of Jupiter's moons, Europa.  Icier than the planet Hoth, Europa is now thought to have an ocean of liquid water up to 160 km (100 miles) deep surrounding the solid, rocky mantle, following the discovery of a magnetic field surrounding the moon, similar to the magnetic field that surrounds the Earth.

What keeps the liquid ocean of Europa from freezing solid?  Jupiter is pretty far from the Sun, and even Mars, which is much closer to both the Sun and the Earth than Jupiter is, has had its water frozen for millennia.  It's thought that the gravity exerted by the enormous mass of Jupiter continually pushes and pulls, or tidal stresses, on its moons, which keep the planets from becoming tectonically inactive, like Mars.  Io, another of Jupiter's moons slightly larger than our Moon, is the most geologically active body in our Solar System.  The tidal stresses from Jupiter exerted on Io apparently make Io's ground itself buckle up and down, similar to the tides we experience here on Earth, except that instead of water moving up and down 18 meters (60 feet), its solid ground moving up and down up to 100 meters (330 feet!)  It's these same tidal stresses that make Io so geologically and volcanically active that help keep Europa from freezing solid.  It has been hypothesized that the tidal flexing might also create hydrothermal vents on the bottom of Europa's oceans, and it shouldn't take too much thinking to realize what that might mean: the potential for extraterrestrial life!

*For example, we humans, as well as all known lifeforms, are carbon-based.  In science fiction, such as Star Trek and Transformers, you will often hear about "silicon-based lifeforms."  Why silicon, as opposed to any other element?  If you look at the periodic table, silicon is in the same group as carbon, and situated right beneath it, and therefore has very similar chemical properties as carbon.



Works Cited:

Thursday, August 21, 2014

'Donts and 'Apsids: Ancestral Dinos and Mammals of the Mid-Triassic

When it comes to dinosaurs and mammals, neither had quite yet evolved yet.  Most people consider animals like Herrerasaurus and Eoraptor to be among the oldest known dinosaurs, but others now consider Nyasasaurus to be the oldest, originating from 240 MY old rocks from Tanzania.  Many dinosaurs looked very similar to other, closely related archosaurs, and only extensive research and more specimens will be able to shed light on these ancient critters.

Mammalian ancestors took the form of the now-extinct dicynodonts and the cynodonts, the latter of which include modern mammals, as well.  In modern mammals, you can see how the skull only has a single hole behind the eye (the space where the coronoid process sneaks in between the main part of the skull and the extruding zygomatic arch), making it a synapsid, or "one-holer."  In previous posts, we've talked about primitive, mammal-like animals such as Dimetrodon and Cotylorhynchus.  Both of these critters are synapsids.  Diapsids, or "two-holers" (remember from our recent Latin/Greek Roots post that the root "di" means "two" [click HERE to read that post]), is another large group, and includes everything from crocodiles to dinosaurs, lizards to snakes, and tuataras to birds.  It also includes the archosaurs, a subgrouping of diapsids that are characterized by an additional hole in the skull, bringing the total number of skull holes up to three.  So some diapsids are also archosaurs, such as birds, dinosaurs, and crocodiles.  There's also the anapsids, which are animals with no holes in the skull, such as amphibians and turtles.  Taxonomically, this can get a bit confusing (especially since sometimes an animals classification doesn't correspond to the number of holes that it has at that point in its evolutionary history), and maybe later we can go into greater detail about these different 'apsids, but below we have a nice picture that should help clear things up a little.
Holes in the skull.  On the top left, we have the prehistoric sea turtle Protostega, an anapsid, with no extra holes behind the eye socket.  Below Protostega, we have Prestosuchus, a type of archosaur.  Not only does Prestosuchus have the two holes in the skull behind the eye socket that characterize older diapsids, but it also has a third hole, in front of the eye socket, but behind the nose openings.  On the bottom right, we have Edaphosaurus, a primitive synapsid.  The largest hole in the skull, furthest on the right, is what will one day become the hole that the coronoid process sneaks through, between the zygomatic arch and the rest of the skull.  In the picture above Edaphosaurus, you can see what I'm talking about, with the extinct mammalian synapsid Hyaenodon.  Here, you can see the little nub of the coronoid process between the zygomatic arch and the skull.
As we talked about in that Latin/Greek post that I mentioned above, the name of the primitive, fin-backed synapsid Dimetrodon means "two measures of teeth," referring to the two different types of teeth this animal possesses.  This is a feature known as "heterodonty," a term that means "different teeth."  Most mammals are heterodonts, and most other animals like reptiles are not, but it doesn't always work that way.  Modern cetaceans such as the sperm whale, as well as orcas and dolphins, are homodonts, meaning that they only have one type of tooth in their mouth.  If you look at ancient ancestors of whales, such as Basilosaurus or Zygorhiza, you can see that they have different types of teeth in their mouth.  This condition can be traced all the way back to 50 MY old Pakicetus.
A trio of cetacean skulls.  On the top left, we have Pakicetus, a terrestrial ancestor of the cetaceans, that lived in Pakistan approximately 50 MYA.  Below Pakicetus, we have Zygorhiza, a more derived and fully aquatic cetacean.  In both Pakicetus and Zygorhiza, you can see how the front teeth and back teeth are different, with the front teeth more for gripping prey, and the back teeth perfect for slicing.  On the right, you can see the skull of the modern killer whale, or orca, which has only one type of tooth in their mouth, the conical, gripping teeth.
Then, of course, there are the heterodont reptiles and dinosaurs such as the Cretaceous crocodilian Malawisuchus, and the dinosaurs Heterodontosaurus (literally meaning "different-toothed lizard") and the oviraptorosaur Incisivosaurus.  We also talked about the primitive pterosaur Dimorphodon (two morphs of teeth) in the Latin/Greek post as well.  If you look at the skulls of any of these animals, you can clearly see the different types of teeth in their mouth.  Cynodonts were not merely an aberrant heterodont form amongst a vast sea of closely related homodonts, but instead were precursors to the default heterodont condition seen in mammals.
The skull of Heterodontosaurus, on display at the American Museum of Natural History in New York.  You can see the two different types of teeth in the skull, especially in the lower jaw.
Works Cited:

Tuesday, November 26, 2013

No I Did Not Mean Triceratops, I Meant Ceratops

Recently, the folks over at the Best Western Denver Southwest purchased yet another fossil cast for their amazing hotel!*  This time, the cast is of a skull nicknamed "Judith," a specimen that is referred by some paleontologists to the dinosaur genus Ceratops.  And, no, I didn't mean to say Triceratops.  Don't feel bad if you haven't heard of Ceratops montanus: as a matter of fact, I hadn't really heard of it either until several weeks ago, when Greg Tally informed me that the Morrison Natural History Museum would soon be receiving a very large box in the mail!  Judith is still in the Cretaceous Room here at the MNHM, where she will stay for at least a few more weeks.  I really didn't know much at all about this dinosaur, and was eager to learn more.  Unfortunately, there's not much out there, as Ceratops is based on just a few bones that were discovered in the late 1800s.  Despite the lack of material, Ceratops does have a pretty fascinating history, and is an incredibly important dinosaur; not because of what has been discovered about the fossils themselves, so much as what these fossils resulted in.
Greg Tally peers through one of the fenestrae (literally means "window" in Latin) in the skull of Judith, the Ceratops montanus skull for the hotel that is temporarily on display at the Morrison Museum.  Photo Credit: Greg and Meredith Tally
When it comes to giving an animal or a group of animals a scientific classification, there are a lot of hoops you have to jump through, and a bunch of rules you have to follow.  Sometimes, groups of animals are named after the best known and understood animal in that group.  For example, Stegosaurus is the genus of dinosaur that defined the group of animals called the stegosaurs, and Tyrannosaurus is the genus of dinosaur that defined the group of animals called the tyrannosaurs.  Sometimes, it isn't quite as simple.  Think about it this way: Las Vegas is easily the most famous city in Nevada, and I'm sure I'm not the only one who spent a significant portion of their childhood thinking that Las Vegas was the capital of Nevada.  However, it is Carson City that holds the official title of capital.  Even though Las Vegas receives much more attention than Carson City, the state of Nevada isn't simply going to change where its capital is, and to the best of my knowledge, a change like that never really happens.
Although that comparison was a bit of a stretch and had about as many holes as the skull of Chasmosaurus, I think you get my point.  The same thing goes for scientific names.  Although Triceratops is the best known individual of the dinosaurian group called the ceratopsians, this group is still called the ceratopsians, as opposed to being called the triceratopsians.  That's because it was Ceratops, and not Triceratops, that was described by scientists first.
Ceratops montanus, temporarily on display at the Morrison Natural History Museum.  Photo Credit: Greg and Meredith Tally
The year was 1888, and paleontology in western North America was still going strong.  We've talked about the Bone Wars between paleontologists Othniel Charles Marsh and Edward Drinker Cope before, and we are going to revisit Marsh in this post.  To maximize the number of fossils he could describe, Marsh called upon the talents of a large number of fossil collectors, including the always brilliant Arthur Lakes in Morrison, Colorado.  Another of these collectors was a man named John Bell Hatcher.  Although Hatcher should also be remembered for a large number of his contributions to paleontology, for our purposes here we remember Hatcher as the man who discovered Ceratops.  On a trip to a known dinosaur fossil site near the Judith River in Montana, Hatcher discovered a number of fossils.  One of these fossil discoveries was composed only of a pair of horn cores.

Doesn't sound like much, does it?  Well, truth be told, it wasn't, though it was enough for Marsh to realize that he had something new.  If you click HERE, you can view the two page paper that Marsh published in 1888 that briefly described this new discovery as an animal called "Ceratops montanus."  There are several things of interest that we should take away from this paper, some of which are:


  1. Marsh originally suspected that this new creature was "nearly allied to Stegosaurus of the Jurassic, but differs especially in having had a pair of large horns on the upper part of the head."  Marsh got the location of the horns right, but the close relation to Stegosaurus.....not so much.  Given the enormously tiny sampling of bones he had to work with though, it's not a surprise that Marsh compared this new animal to something that he already knew a good deal about.  Keep in mind that this is the very first scientific description of a ceratopsian dinosaur, so Marsh just had to go off of what had already been discovered.  Which was nothing.
  2. Marsh notes that the "position and direction" of the horns could be likened to the enormous Meiolania, an extinct turtle from Australia, as well as the lizards in the genus Phrynosomax, the horned lizards.  He also notes that amongst the dinosaurs, the "only known example of a similar structure....is the single median horn-core on the nasals of Ceratosaurus," a mid-sized theropod dinosaur from the Late Jurassic Morrison Formation.   
  3. In 1887, the year before this paper was published, geologist Whitman Cross sent Marsh a pair of horn cores about two feet in length and six inches across at their widest point.  Discovered right smack dab in the middle of where Denver, Colorado is today, Cross relayed to Marsh that they had been discovered in beds of Cretaceous rock.  Marsh, however, decided that these horns must have belonged to some sort of enormous bison, and gave the horns the name "Bison alticornis."  Perhaps Marsh was still suffering from the misconception that the 1887 discovery was, indeed, an enormous extinct bison, as these 1887 Denver horn cores are not mentioned in the brief Ceratops paper.  It is mentioned, however, that if the horns were discovered "detached," their "resemblance in form and position of the posterior horn-cores to those of some of the ungulate mammals is very striking," and the horns would "naturally be referred to that group."  I have no evidence to support my hypothesis, but I wonder whether this comparison to the mammalian ungulates is insurance on the part of Marsh, as perhaps at this point he had recognized the true nature of the 1887 horn cores.  This is pure conjecture on my part, and is mostly irrelevant anyways, as in 1889 Marsh recognized the dinosaurian nature of the Denver cores, and referred them to the genus Ceratops.  Today, these horn cores are regarded as belonging to Triceratops.
  4. Marsh mentions that several limb bones, vertebrae, and teeth were also found in the Ceratops horizon, as well as several bits of dermal armor, and states that he believes they also belonged to Ceratops.  Whether this is true or not I do not know, but what I do know to be false is Marsh's next sentence, in which he states that the bones "indicate a close affinity with Stegosaurus, which was probably the Jurassic ancestor of Ceratops."  The specimen is housed in the Smithsonian today, under the catalogue number USNM 2411.  A search through the online records of the Smithosonian shows that 2411 consists only of a partial skull, which seems to be consistent with what I've read in other sources.  I'm not sure whether these other skeletal elements mentioned above have found a definitive dinosaurian home, or whether their true owner is uncertain.  
  5. The final paragraph is, in my opinion, inarguably the most important.  The paragraph reads as follows: "The remains at present referred to this genus, while resembling Stegosaurus in various important characters, appear to represent a distinct and highly specialized family, that may be called the Ceratopsidae."  In this paragraph, Marsh has created the group of dinosaurs that, more colloquially, we refer to as the ceratopsians.  Or, more colloquially than that, "those dinosaurs that look like Triceratops with those horns."

Ceratops was discovered in what scientists now call the Judith River Formation.  Several other ceratopsians have been discovered in this formation, and due to the small amount and fragmentary nature of the material that was originally described as Ceratops, most paleontologists consider the dinosaur to be a nomen dubium.  Nomen dubium pretty much means that the material is too fragmentary for it to be diagnostic, and can't really be used in the future to determine whether new specimens are the same as the original or not.  Whether or not the newly discovered Judith specimen currently on display at the Morrison Museum is, indeed, Ceratops is still up in the air, as the paper has not been published yet.  Almost all of my Ceratops knowledge is out on the table for all to see, so I am not going to speculate or attempt to draw conclusions about something that I don't really know enough about to have an informed opinion on.  Guess we will just have to wait and see!  In the meantime, come on by the Morrison Natural History Museum and the Best Western Denver Southwest to see Judith, and much more!

*If you've been living underground amongst worms and fossils for the last few months, you might not have heard of the hotel, so you can check out some incredible pictures of the best Best Western by clicking HERE and HERE.

Works Cited:

Wednesday, October 2, 2013

Did Velociraptor Hunt In Packs?

Ever since the movie Jurassic Park came out in 1993, people from all over the world added the name Velociraptor to their often-short list of dinosaurs they had heard of, joining more famous dinosaurs such as Tyrannosaurus, Stegosaurus, and Triceratops. While the dinosaurs portrayed in the movie have often been hailed as “ahead of the times,” Steven Spielberg of course had to make some assumptions about dinosaur behavior.

Michael Crichton, the author of the original Jurassic Park book, did too, which can be clearly seen when reading both of his Jurassic Park books. In the first one, a theory was circulating that Tyrannosaurus had eyes like a frog, that would be unable to see something so long as it didn’t move. This is reflected in the way Dr. Alan Grant, one of the protagonists in the novel (as well as the subsequent movie) tells his comrades to react when they are spotted by a Tyrannosaurus: just don’t move. (Don’t blink. Don’t even blink. Blink and you’re dead.)  

However, this theory was debunked by the time that it came for Crichton to write his next dinosaur-themed book, The Lost World, a sequel to Jurassic Park.  In the sequel, Ian Malcolm, who was also a protagonist in the first novel, moves to the forefront. He explains that the Tyrannosaurus from the first novel was probably just not hungry enough to attack them, and that it was just toying with them. A clever way of seamlessly working that scientific transition into the books without disrupting the canon of the story!*

Spielberg also played a lot of things up throughout the movies to make it more cinematic and exciting: and, to be honest, I can’t really blame him, at least not as critically as some paleontologists do. (That, however, is a story for another time). Today, however, we are going to be talking about one cinematic Spielbergian leap, and the resounding effect it has had on paleo-enthusiasts the world over: the idea of raptors hunting in packs.

In the books and movie, the Jurassic Park raptors are portrayed as clever, cool, and calculating killing machines with the intelligence of a dolphin or an ape. Scientists know, however, that while animals such as Velociraptor and Troödon may have been smarter than their mammalian counterparts of the time, their intelligence nowhere near reaches that of some modern day cetaceans and primates. Most people don’t want to accept that, though: they want their dinos really smart!

Here’s my stab at psychology for the day. In my semester long psychology course that I took last year, we discussed something in a relationship and everyday life called a fiction. Essentially, when human beings have feelings for someone, they develop what we call “fictions” in their mind. Fictions  about physical appearance, fictions about intelligence, and fictions about other redeeming qualities as well. If two people are projecting these fictions onto each other, then a relationship can develop. On the other hand, sometimes these people are confronted with these fictions, and they realize that they are not all that they are cracked up to be. When these people fall short of their fictions, some emotional turmoil can result. In my opinion, the reality of the Velociraptor, as well as the reality of the rest of the dromaeosaurs, falls short of people’s expectations. I think a similar thing is occurring right now with dinosaurs and feathers: people want their T-rex scaly, not feathery! That might be why many people seem so opposed to the idea.

“All right,” people say. “So Velociraptor wasn’t a genius. It still hunted in packs, though, right?” It seems like a fairly obvious answer: “Of course they did! ….Right? I mean….if you think about it….” It’s when you start to really think about the evidence that this idea really falls apart. First, let’s look at a related animal called Deinonychus. Deinonychus is a mid-sized dromaeosaur, about thirteen feet long, and weighing about as much as a wolf. Living during the Early Cretaceous Period, between about 118 – 110 MYA, remains of Deinonychus have been found in the western United States. Deinonychus remains aren’t always found solo, however: in some cases, it looks like Deinonychus might have dined and died! At several different sites, Deinonychus remains have been found buried in close proximity to a large herbivorous ornithopod called Tenontosaurus.  Shed teeth from multiple animals seems to indicate that these animals might have been feeding together. Some paleontologists take this a step further, and propose that, not only did these animals feed together, but they lived and hunted together, too!

In this post, I am going to be using several modern-day analogues to point out flaws in some theories. (We’ve already done it with the deer!)  This time, we’re flying over to Indonesia to visit the Komodo dragon. The Komodo dragon is a very interesting animal that, like many other animals, will resort to cannibalism. The young Komodos take to the trees, hiding up in branches to light to support the weight of the adults.  The Komodos lead a generally solitary existence: that is, until it comes time to feed. At feeding time, the dragons will swarm all over the carcass, each fighting for a stake of the meal. To an outsider, unaware of how the animal had been killed, it might be interpreted that perhaps this was a family group that worked together to bring down a much larger prey.

Another comparison I like to make is a theoretical one. Imagine that a pride of lions has subdued a zebra on the plains of Africa. After they have eaten their fill, they move off into the shade to sleep off their recently acquired weight. Immediately afterwards, the vultures swoop in on the kill. Suddenly, somehow a flash flood overtakes the carcass and the vultures, leaving them buried in mud, sand, and silt. Over the next few thousand years, their remains fossilize. One million years later, paleontologists come across this find. To their eyes, it would appear, for all intents and purposes, like the vultures ganged up in a pack to subdue this one-toed creature. Maybe not the best comparison, but one that I always like to think about.

So does the evidence seem to allow us the conclusion that multiple Deinonychus fed together? I would say yes, the evidence does support that conclusion. Does the evidence support the conclusion that multiple Deinonychus lived together, and worked together to bring down the Tenontosaurus? In my opinion, I don’t think that that is enough evidence. Other paleontologists disagree, however, leaving the matter open for debate. Right now, what we need is a good fossil trackway.
Pyg learns about several baby Apatosaurus tracks at the Morrison Natural History Museum.  Together, these tracks create a trackway, which has revealed some very interesting behavior about these young sauropods!  To learn more, make sure to check out the museum's Facebook page HERE!
We’ve talked about trackways on the blog before. Fossil trackways are also often good evidence for group moving. We have many trackways that show groups of dinosaurs, such as sauropods, moving together in multi-age herds. We’ve talked before about the exciting conclusions that paleontologists are drawing by studying blocks of fossil footprints at the Morrison Natural History Museum. While fossil footprints aren’t always necessarily the final say, they are simply one more piece of the puzzle. And when it comes to dromaeosaur footprints, footprints that many different paleontologists agree belong to a dromaeosaur, we have none. Zilch. Zero. Nada. No dromaeosaur footprints. Not yet, anyways. So there’s one possible line of evidence down the drain.
Pyg compares her foot to the smallest baby Stegosaurus footprints in the world, also at the Morrison Natural History Museum!  These footprints us gain insights into social behavior, animal size, and locomotion.
Thus far, it doesn't seem like we have any evidence in FAVOR of Velociraptor hunting in packs. But evidence can work both ways: what about evidence AGAINST Velociraptor as a pack hunter? As a matter of fact, there is one main line of evidence that I find to be, if not conclusive, highly indicative of the truth being the pack hunting. This line of evidence comes from the environment that Velociraptor would have lived in. Velociraptor inhabited what is now the Gobi Desert of Mongolia between around 70 and 75 million years ago, during the Late Cretaceous. Back then, the Gobi looked a lot like it does today: deserty. Now, this is very important. Think about desert animals today, specifically the carnivores, but the herbivores as well. Although the desert is certainly not a lifeless place, it is by no means a party like the African Serengeti, or the great plains of North America (before the railroads came through and people killed almost all of the bison). There simply isn't enough food for large animals to get by, especially not large groups of them.

Now think about a standard predator/prey ratio seen in environments today. Let's talk about my home-state of Colorado. There are lots of places to hike in Colorado, and in almost any part of the state you can see some sort of deer, be it mule deer, white-tailed deer, elk, or moose: you name it, you can probably see at least one of these cervids at almost any place in Colorado. Now, consider this: how often do you see bears in Colorado? Or mountain lions? Not terribly often, and especially not very often when you consider how often one sees deer. That's because of the predator/prey ratio. Essentially, if the balance between predator and prey is not kept in check, then populations will crash. Therefore, it is imperative that the prey species outnumber the predator species by what is usually a significant margin, otherwise the predators will overhunt, and they will starve to death. (For a more complete discussion of the predator/prey ration, this time in the context of the lynx/hare cycle of Canada, click HERE).

Some predators can get away with hunting in groups or packs because the prey species are relatively abundant. For example, the African Serengeti. The prey density is just so incredibly high that many different types of predators, such as lions, hyenas, and African wild dogs, can all hunt in packs. It works for them, because there are just so many prey species there!

Now let us bring our attentions back to the deserts. You can walk for miles, you can drive for even more, and see hardly a sign of any vertebrate life. Most likely, all you will see is a vulture or a hawk soaring the thermals high above you, watching for its next meal. If you're lucky, you might see a deer, or possibly even a javelina (a pig-like creature native to the south western United States, as well as Central and South America). You aren't going to see a lot of them, though. And if the prey isn't plentiful, then the predators sure aren't going to be, either!

Although dinosaurian-dominated ecosystems were undoubtedly different in some aspects from the mammalian-dominated ones of today, the fundamentals of the predator/prey ration would still stand true. There just wouldn't have been enough food to go around for these animals to have been pack hunters!

So, the final question: did Velociraptor hunt in packs? Or didn't it? If I had to hazard an answer, I would say no, no they did not. Due to the extreme lack of evidence in favor of this social behavior, as well as some evidence that seems to indicate that they wouldn't have, I would say that they did not hunt in packs. Obviously, with future discoveries, my ideas may change, which is one of the great things about science: we are always learning new things! And who knows: maybe one day, it will be one of YOU who discovers that crucial bit of evidence that shows that Velociraptor did, indeed hunt in packs!

OK, that was WAY too cheesy to leave like that. I felt uncomfortable even writing it. Let's end on a joke, instead. Why couldn't T-rex clap its hands? Huh? Give up? Because he was dead. Thank you ladies and gentlemen, I will be here all week.

A special thanks to Matthew Mossbrucker and Robert Bakker for their helpful information in making this post!

*To be honest, the whole concept of the theory doesn’t make a lot of sense: think about modern-day deer as an analogue for extinct prey species. If they see a predator, they are going to freeze, as it is much more difficult to pick out a still animal from the surrounding landscape than it would be a moving animal.  So predators would have to be able to pick out the prey, otherwise it would never capture one.  This freezing behavior on the part of deer when they are startled also explains why deer often freeze in front of car headlights: deer in the headlights!

Sunday, September 29, 2013

The Dino Hotel Nears Completion! Part 2

As I mentioned IN THE LAST POST, the Best Western Denver Southwest is nearing its completion!  Soon, it will be the most powerful natural history hotel/museum in the entire galaxy!  In this post, we are going to see more of what makes this dinosaur hotel so freaking awesome!  Let's check out some of the skulls and bones that are going to go in the hotel!  First off, an awesome skull of an Acrocanthosaurus!

A bunch of other awesome bones for the hotel were delivered a few months ago to the Morrison Natural History Museum since the lobby at the hotel wasn't finished yet!  Any guesses as to what is inside of the crate?

I hate to say it, but your guesses were probably wrong.  Here is what was inside, with Pyg modeling for scale!  First off, a pair of Brachiosaurus femora!
One day when the Pachycephalosaurus skull was at the museum, Dr. Bob came in one day with a few other pachycephalosaur skulls belonging to Stygimoloch and Dracorex, and had us paint them!  
You can see that all three skulls are approximately the same size: there's NO way that they are all the same animal, as some paleontologists believe!
Another great picture of the Pachycephalosaurus skull!

Here's another dinosaur skull, this one is Edmontosaurus!
And the third and final awesome skull, a Camarasaurus!
The hotel has many other cool specimens, such as this Allosaurus skull, which was in the lobby!

Not only are there some FANTASTIC skulls, the hotel has some casts of fossil skeletons, as well!  Here is the plan for Wadsworth the Stegosaurus, hanging above the front desk!

First, here is Good Sir Wadsworth before being brought inside!

Wadsworth being hung up!

And finally, the lobby, complete in all of its glory!  Notice the Brachiosaurus femora off to the left, and the Edmontosaurus skull in the cabinet around the middle of the picture!

Here are some more great pictures from the lobby!  Here are the curiosity cabinets under construction:

And the final product, with the Allosaurus skull above the fireplace!

If you travel to the dining hall, right off the lobby, you can enjoy lots of fun food, just as an enormous Tylosaurus (now named Sophie) would have done 70 million years ago!  First, some pictures of Sophie!


The flipper of the specimen!

As we mentioned before, this Tylosaurus wasn't hungry when it died!  In the stomach of this beatsie are the remains of a small creature called Dolichorhynchops!  To learn more about both Tylosaurus and Dolichorhynchops, click the link HERE!

Some days, you can also check out a fun-filled and exciting fossil table, crammed full of awesome goodies!  Here are several shots of that!

They also have an awesome donation box for the Morrison Museum!  This mosasaur skull, belonging to another Western Interior Seaway critter called Clidastes, will sit inside of it!

Indeed, this hotel is full of prehistoric from top to bottom!  Actually, literally to the top, as the hotel will have a Pteranodon weathervane!  Here are the plans, and the actual weathervane itself!

Want to hear more about the hotel, but just won't be in the area anytime soon?  Not a problem!  Like their Facebook page by clicking HERE!  Not only do they share lots of awesome pictures and fun facts, they also create lots of fun Dino Memes!  Here is one of my favorites (partly because they included a link to our Xiphactinus: The Inception Fossil post when they uploaded the picture to Facebook!), but partly because it's an awesome meme!

And here is the first in a series of "Fun Fact" memes that I am working on with the Tally's!

Hope to see you all at the hotel!
Related Posts Plugin for WordPress, Blogger...
Related Posts Plugin for WordPress, Blogger...